Molecular Vibrations of Cubane and Its Deuterated Derivatives

S. J. Cyvin, B. N. Cyvin, and J. Brunvoll Division of Physical Chemistry, The University of Trondheim, Norway

Z. Naturforsch. 38 a, 1248 – 1262 (1983); received August 8, 1983

A harmonic field for cubane is developed by means of the following experimental data from literature: vibrational frequencies for C_8H_8 , sym- $C_8H_6D_2$, sym- $C_8H_2D_6$ and C_8D_8 , in addition to three Coriolis constants of C_8H_8 . As a part of this analysis a new iteration method was developed for simultaneous fitting of vibrational frequencies and first-order Coriolis constants of a three-dimensional symmetry block. The force constants were used to calculate the vibrational frequencies of all the twenty existing partially deuterated cubanes, in addition to the unsubstituted (C_8H_8) and perdeuterated (C_8D_8) molecules. Also the first-order Coriolis constants, mean amplitudes of vibration and perpendicular amplitude correction coefficients for selected cubane molecules are reported.

Introduction

Cubane (pentacyclo [4.2.0.0.^{2,5} 0.^{3,8} 0^{4,7}] octane), C₈H₈, is a highly interesting hydrocarbon because of its symmetrical cage structure, a cube skeleton of carbon atoms. The compound was first synthesized by Eaton and Cole [1]. The crystal structure was investigated by Fleischer [2]. A theoretical study of the molecular vibrations of the cubane model is due to Brunvoll and Cyvin [3], who produced a complete set of symmetry coordinates.

Raman and infrared spectra of cubane and four of its deuterated derivatives are reported by Della et al. [4]. The spectra were recorded in the solid state and solutions. The vapour-phase infrared spectrum of cubane, along with Raman spectra in solid and solution, were published by Cole et al. [5], based partly on a dissertation by Pakes [6].

The existing force field analyses [5, 6] of cubane are considered as preliminary. In the present work we have performed a detailed normal coordinate analysis taking into account both the observed Coriolis constants [5] and isotopic frequencies [4] as additional data. Furthermore, the mean amplitudes of vibration [7] were computed for the first time.

Molecular Structure

The octahedral (O_h) symmetry for the cubane molecule has been established. We have adopted

Reprint requests to Prof. S. J. Cyvin, Division of Physical Chemistry, The University of Trondheim, N-7034 Trondheim-NTH, Norwegen.

the CC bond distance of 1.551 Å from the x-ray work [2]. Modern *ab initio* computations [8] suggest this value to be about 0.03 Å too low, but that is not supposed to have a significant effect on the present analysis. The CH bond distance was estimated to be 1.085 Å.

Preliminary Force Fields

A simple, approximate force field was assumed in terms of a force-constant matrix based on valence coordinates including redundancies:

r CH stretchings, d CC stretchings,

 γ CCC bendings , δ CCH bendings .

A number of runs with different numerical values were executed in order to get a reasonable agreement of the calculated frequencies with observed data for cubane and cubane-d₈ [4]. In this process some nonvanishing interaction force constants seemed to be unavoidable. Table 1 shows the produced force constants, which are consistent with

Table 1. Preliminary force constants.

Coor- dinate	Pakes [6]	Present	
r	4.837 mdyne/Å	4.85 mdyne/Å	
d	3.559 mdyne/Å	3.8 mdyne/Å	
γ	0.758 mdyne Å	0.842 mdyne Å	0.35 mdyne/Å
δ^{γ}	0.421 mdyne Å	0.454 mdyne Å	0.27 mdyne/Å
d/d	0.101 mdvne/Å	0	,
d/γ	0	0.155 mdyne	0.1 mdyne/Å
d/δ	0.075 mdyne	0.283 mdyne	0.1 mdyne/Å

0340-4811 / 83 / 1100-1248 \$ 01.3 0/0.-Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz. This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

Table 2. Vibrational frequencies (cm⁻¹) for C₈H₈ and C₈D₈ calculated from simple, approximate force fields, along with observed data.

Species (activity) ^a	No.	Cubane	Cubane			Cubane-d ₈		
•		Calc. (a)	Calc. (b)	Calc. (c)	Obs. [4]	Calc. (b)	Calc. (c)	Obs. [4]
A_{1g} (Ra)	1 2	2991 990	2987 994	2991 990	2995 1002	2225 944	2228 941	2259 956
E_g (Ra)	5	1167	1062	1083	1083	1007	1044	1027
	6	877	872	936	912	651	687	684
F_{1g} (ia)	9	1115	1073	1115	1130	837	869	884
F_{2g} (Ra)	13	2989	2984	2988	2970	2217	2219	2232
	14	1361	1282	1247	1182	1222	1181	1072
	15	887	879	910	821	643	671	715
	16	636	604	635	665	583	613	586
A_{2u} (ia)	3 4	2990 958	2984 912	2990 958	2978 839	2217 869	2224 911	~ 2239 807
E_u (ia)	7	1136	1093	1136	1151	880	915	960
	8	387	367	387	617	323	339	527
$F_{1u}(IR)$	10	2990	2985	2988	2978	2221	2222	2240
	11	1301	1246	1237	1230	1153	1134	1083
	12	864	862	885	853	651	674	686
F_{2u} (ia)	17	1227	1120	1113	1036	1088	1086	924
	18	908	901	949	829	656	688	674

^a Ra Raman active; ia inactive; IR infrared active.

the calculated frequencies of Table 2. Here the column (a) shows the calculated frequencies for C₈H₈ with a diagonal force field (all interaction force constants neglected); the main constants have the same numerical values in the cases (a) and (c); cf. Table 1. The nondiagonal force-constant matrix was used to calculate the frequencies for both C8H8 and C_8D_8 ; cf. column (c). The set of column (b) is calculated with numerical force constants from Pakes [6], also given in Table 1. In this run we were not able to reproduce exactly the reported calculated frequencies in the mentioned work [6], but the general agreement was satisfactory. Pakes [6] has not calculated any isotopic frequencies. In Table 2 the calculated frequencies are compared with observed values from Della et al. [4]. Our results are seen to be comparable with those of Pakes [6], but give a slightly better general agreement with the observed frequencies. In general the calculations support the experimental assignment except for the lowest $E_u(v_8)$, which is spectroscopically inactive. Most probably this frequency has been mis-assigned in

the experimental works [4, 6]. This conclusion is supported by the calculations of Pakes [6].

Species F_{1u} of C_8H_8

Experimental Data

The first-order Coriolis constants [7, 9–12] of the F_{1u} species of cubane (say ζ_1 , ζ_2 and ζ_3 ; cf. Table 3) have been determined by means of an analysis of the rotational structure of the infrared bands in the gas phase [5, 6]: 2990, 1235 and 852 cm⁻¹. Nevertheless we have adopted the infrared solid state data [4] (Table 2) because we wish to have the corresponding experimental data for isotopic derivatives [4] for further considerations. In the first place, however, we have considered the F_{1u} species of light cubane. A force field was derived using the experimental ζ values as additional information along with the frequencies. The ζ -sum rule [7, 9–12] reads in the present case

$$\zeta_1 + \zeta_2 + \zeta_3 = 0. {1}$$

⁽a) Present diagonal force field.

⁽b) Nondiagonal force field from Pakes [6].

⁽c) Present nondiagonal force field.

The observed ζ values (Table 3) add up to 0.005; hence the experimental error limits of about ± 0.003 are to be expected. We have modified the observed values within these limits so that they obey the ζ -sum rule accurately; cf. the parenthesized values of Table 3. This modified set is the one to be used in the force constant determination.

Symmetry Coordinates

The symmetry coordinates of Brunvoll and Cyvin [3] were utilized with some modifications concerning the removal of redundancies. In the F_{1u} species in particular the γ -type coordinates were left out of S_2 . The complete expressions of the F_{1u} symmetry coordinates in terms of the valence coordinates are given in the following; cf. Fig. 1 for the notation used for the valence coordinates.

$$S_{1a}(F_{1u}) = 8^{-1/2}(r_1 + r_2 - r_3 + r_4 - r_5 - r_6 + r_7 - r_8) ,$$

$$S_{2a}(F_{1u}) = 8^{-1/2}(d_{12} + d_{14} - d_{36} + d_{47} - d_{56} - d_{58} + d_{27} - d_{38}) ,$$

$$S_{3a}(F_{1u}) = \frac{1}{4}(RD)^{1/2}(\delta_{14} + \delta_{27} - \delta_{85} - \delta_{36} + \delta_{12} - \delta_{38} - \delta_{65} + \delta_{47} - \delta_{58} - \delta_{63} + \delta_{41} + \delta_{72} - \delta_{56} + \delta_{74} + \delta_{21} - \delta_{83}) ;$$

$$(2a)$$

$$S_{1b}(F_{1u}) = 8^{-1/2} (r_1 + r_2 + r_3 - r_4 - r_5 - r_6 - r_7 + r_8) ,$$

$$S_{2b}(F_{1u}) = 8^{-1/2} (d_{12} + d_{13} - d_{46} - d_{47} - d_{56} - d_{57} + d_{28} + d_{38}) ,$$

$$S_{3b}(F_{1u}) = \frac{1}{4} (RD)^{1/2} (\delta_{13} - \delta_{46} - \delta_{75} + \delta_{28} + \delta_{12} + \delta_{38} - \delta_{65} - \delta_{47} - \delta_{57} + \delta_{82} + \delta_{31} - \delta_{64} - \delta_{56} - \delta_{74} + \delta_{21} + \delta_{38}) ;$$

$$(2b)$$

$$\begin{split} S_{1c}(F_{1u}) &= 8^{-1/2} (r_1 - r_2 + r_3 + r_4 - r_5 + r_6 - r_7 - r_8) \;, \\ S_{2c}(F_{1u}) &= 8^{-1/2} (d_{13} + d_{14} + d_{36} + d_{46} - d_{57} \\ &\quad - d_{58} - d_{27} - d_{28}) \;, \\ S_{3c}(F_{1u}) &= \frac{1}{4} \left(RD \right)^{1/2} \left(\delta_{13} + \delta_{46} - \delta_{75} - \delta_{28} + \delta_{14} - \delta_{27} \\ &\quad - \delta_{85} + \delta_{36} - \delta_{57} - \delta_{82} + \delta_{31} \\ &\quad + \delta_{64} - \delta_{58} + \delta_{63} \\ &\quad + \delta_{41} - \delta_{72} \right) \;. \end{split} \tag{2 c}$$

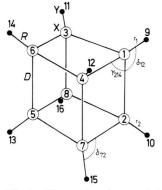


Fig. 1. The molecular model of cubane, X_8Y_8 (symmetry O_h). Valence coordinates: Eight r_i stretchings for the X_i -Y bonds; twelve d_{ij} stretchings for the X_i - X_j bonds; twenty-four δ_{ij} bendings for the Y- X_i - X_j angles; twenty-four γ_{ijk} bendings for the X_i - X_j - X_k angles. R and D are used to denote the XY and XX equilibrium distances, respectively.

Iteration Procedure with Linear Equations for Coriolis Constants

Observed Coriolis constants (ζ) are recognized as very useful additional information for determinations of force constants. General methods have been developed for ζ value fittings, based on the Jacobian elements, $\partial \zeta_k/\partial F_{ij}$ [15–17]. We have developed a new iteration procedure in the case of a three-dimensional species of degenerate vibrations, applicable to F_{1u} of cubane. Here the problem is to fit six independent force constants to five independent observed data, viz. three frequencies and two independent ζ values. By the new procedure we were able to deduce a set of symmetry force constants which reproduce accurately all the experimental frequency and Coriolis data. The iteration procedure is outlined in the following.

(i) Choose an initial force field in terms of the symmetry **F** matrix:

$$\begin{bmatrix} F_{11} & F_{12} & F_{13} \\ & F_{22} & F_{23} \\ & & F_{33} \end{bmatrix}.$$

(ii) A linear equation for the ζ constants in terms of the force constants is given by [7]

$$\sum_{i=1}^{3} \zeta_{i} \lambda_{i} = \sum_{i=1}^{3} F_{ii} C_{ii} + 2 (F_{12} C_{12} + F_{13} C_{13} + F_{23} C_{23}).$$
 (3)

Here λ_i are the familiar parameters proportional to the squared normal frequencies [7, 13]; C_{ij} are the elements of the appropriate symmetrical, three-dimensional block of the Coriolis \mathbf{C}^{α} matrix [7, 10]. The force constants are adjusted to the experimental $\zeta\lambda$ product-sum, i.e. the left-hand side of (3), through $F_{ij} + \Delta F_{ij}$, where

$$\Delta F_{ii} = (C_{ii}/D) \sum_{k} \zeta_{k} \lambda_{k} ,$$

$$\Delta F_{ij} = (2 C_{ij}/D) \sum_{k} \zeta_{k} \lambda_{k} \quad (i \neq j) .$$
 (4)

Here

$$D = \sum_{i=1}^{3} C_{ii}^{2} + 4(C_{12}^{2} + C_{13}^{2} + C_{23}^{2}).$$
 (5)

(iii) Invert the adjusted **F** matrix block to obtain the compliants [7, 14]:

$$\begin{bmatrix} N_{11} & N_{12} & N_{13} \\ & N_{22} & N_{23} \\ & & N_{33} \end{bmatrix}.$$

(iv) Another linear equation for the ζ constants exists, viz. [7]

$$\sum_{i=1}^{3} (\zeta_i/\lambda_i) = \sum_{i=1}^{3} N_{ii} \bar{C}_{ii} + 2(N_{12}\bar{C}_{12} + N_{13}\bar{C}_{13} + N_{23}\bar{C}_{23}).$$
 (6)

Here \bar{C}_{ij} are the appropriate elements of the $\bar{\mathbf{C}}^{\alpha}$ matrix [7, 10]. The compliants are now adjusted to the experimental ζ/λ quotient-sum through $N_{ij} + \Delta N_{ij}$, where

$$\Delta N_{ii} = (\bar{C}_{ii}/D') \sum_{k} (\zeta_{k}/\lambda_{k}) ,$$

$$\Delta N_{ij} = (2\bar{C}_{ij}/D') \sum_{k} (\zeta_{k}/\lambda_{k}) \quad (i \neq j)$$
(7)

and

$$D' = \sum_{i=1}^{3} \bar{C}_{ii}^{2} + 4(\bar{C}_{12}^{2} + \bar{C}_{13}^{2} + \bar{C}_{23}^{2}).$$
 (8)

(v) The obtained N matrix block is inverted in order to produce the corresponding F.

Repeat (ii)-(v) until a self-consistent field is achieved (if possible) with a sufficient accuracy. This force field would reproduce accurately the experimental ζ values if the calculated frequencies were correct.

(vi) Adjust the **F** matrix deduced from the above iteration to the experimental frequencies according to the **L**-matrix approximation method [18-20]:

$$\mathbf{F} = \tilde{\mathbf{L}}^{-1} \lambda(\exp) \, \tilde{\mathbf{L}}^{-1} \,. \tag{9}$$

Use the force field from (9) under point (i), and start over again from (ii).

Numerical Calculations

The preliminary force fields (see above) are not consistent with the experimental ζ values, as is seen from Table 3. The symmetry **F** matrix block of the force field (c) for the species F_{1u} reads (in mdyne/Å)

$$\begin{bmatrix} 4.850 & 0 & 0 \\ & 4.503 & -0.310 \\ & & 0.810 \end{bmatrix}.$$

The F_{11} constant was maintained during the determination of an initial force field. At first it was also attempted to keep $F_{12} = F_{13} = 0$. In that case (3) together with [7, 13]

$$\sum_{i=1}^{3} \lambda_i = \sum_{i=1}^{3} F_{ii} G_{ii} + 2 (F_{12} G_{12} + F_{13} G_{13} + F_{23} G_{23})$$
 (10)

gave $F_{33} = 0.394$ mdyne/Å along with a linear dependence for F_{22} and F_{33} . Some pairs of solutions (in mdyne/Å) are (5.94, -0.31) and (6.16, 0.00). Further considerations were made with (6) included into the system, but none of the solutions gave acceptable calculated frequencies and Coriolis constants. In conclusion the approximations of $F_{12} = F_{13} = 0$ had to be abandoned. A nonvanishing F_{13} constant was introduced. The following numerical values were found, which obey (3) and (10), and where F_{23} and F_{33} were assumed as compatible with the preliminary set of (c); see above.

$$\begin{bmatrix} 4.850 & 0 & 0.249 \\ & 4.037 & -0.300 \\ & & 0.810 \end{bmatrix}.$$

Table 3. Preliminary calculated and observed F_{1u} Coriolis constants of C_8H_8 .

Constant	Calculate	d	Observed	
	(b)	(c)	[5, 6]	
ζ_1	-0.021	-0.019	-0.099	(-0.100) a
ζ_2	-0.051	0.025	0.258	(0.255)
ζ_3	0.072	-0.006	-0.154	(-0.155)

^a Parenthesized values are modified in order to fit accurately the ζ -sum rule.

This set was used as the starting point of the iteration procedure described above. Convergence was obtained, and the result of the iteration reads

$$\begin{bmatrix} 4.784 & -0.083 & 0.279 \\ & 3.853 & -0.386 \\ & & 0.907 \end{bmatrix}$$

and is referred to as set (d). A similar result was obtained by Cole et al. [5] after computations according to the more conventional iteration procedure.

Refined Computations for C₈H₈ and C₈D₈

Valence Force Constants

A new set of valence force constants were derived in consistence with the force field of set (d) for the species F_{1u} of C_8H_8 (see above). This problem is indeterminate. We have selected nine nonvanishing parameters and determined the following numerical values (all in mdyne/Å): f(r) = 4.784, f(d) = 3.400,

 $f(\gamma) = 0.203, \ f(\delta) = 0.302, \ f(d/\gamma) = 0.100, \ f(d/\delta) =$ 0.085, f(r/d) = 0.075, $f(r/\delta)$ adjacent = -0.099, $f(r/\delta \text{ opposite}) = 0.099$. The interaction terms all pertain to neighbouring coordinates, i.e. those having at least one C atom in common. Table 4 shows in column (d) the calculated frequencies from this force field for the whole molecule of C₈H₈. The corresponding symmetry force constants were deduced and subsequently adjusted according to the L-matrix approximation method (see above) to the frequencies listed in column (e) of Table 4. They are all equal to the observed values [4] except for v_8 , where it was supposed to be more correct to use the calculated value from column (c) of Table 2. The refined force field (e) was used to calculate the frequencies of C₈D₈ with the result displayed in Table 4. There are several significant discrepancies on comparing with the observed values [4]. Nevertheless, the general agreement seems good enough for our purpose, namely to use the force field as a starting point in an iteration procedure for frequency fitting of the two isotopic molecules.

Table 4. Vibrational frequencies (cm $^{-1}$) for C_8H_8 and C_8D_8 from different force fields, along with modified observed data.

Species No.	No.	Cubane		Cubane-d ₈				
		Calc. (d)	Calc. (e)	Calc. (f)	Modified observed	Calc. (e)	Calc. (f)	Modified observed
$\overline{A_{1g}}$	1 2	2956 941	2995 1002	2995 1002	2995 1002	2218 957	2221 956	2221 956
E_g	5	1113	1083	1084	1083	993	1026	1027
	6	914	912	913	912	704	682	684
F_{1g}	9	1179	1130	1131	1130	881	882	884
F_{2g}	13	2995	2970	2946	2970	2219	2197	2135
	14	1202	1182	1180	1182	1060	1060	1072
	15	879	821	823	821	652	692	715
	16	497	665	663	665	626	590	586
A_{2u}	3 4	3010 777	2978 839	2978 839	2978 839	2236 790	2190 807	2190 807
E_u	7	1190	1151	1151	1151	916	960	960
	8	297	387	387	387	344	328	328
F_{1u}	10	2978	2978	2969	2978	2216	2208	2184
	11	1230	1230	1234	1230	1081	1072	1083
	12	853	853	851	853	677	684	686
F_{2u}	17	1115	1036	1038	1036	936	921	924
	18	917	829	834	829	649	665	674

⁽d) Valence force constants consistent with observed F_{1u} frequencies and ζ values of C_8H_8 .

⁽e) Adjusted to C₈H₈ frequencies, which are identical with observed values (cf. Table 2), except for ν₈.

⁽f) Result of the iteration procedure.

Iteration Procedure

A standard least-squares fitting was performed for the two isotopic molecules in question, cubane and cubane- d_8 . For this purpose it was adherred to the frequencies of C_8H_8 from column (e) of Table 4. Some of the C_8D_8 frequencies were modified because of the inaccuracies in the Teller-Redlich product rule for the observed frequencies [4]; cf. Table 5.

Table 5. Teller-Redlich product rule for the C_8H_8/C_8D_8 frequencies.

Species (O_h)	Observed	Theoretical
$\overline{A_{1a}}$	1.390	1.414
E_{a}^{ig}	1.406	1.414
$F_{1,a}^{g}$	1.278	1.282
F_{2a}^{1g}	1.912	1.998
$egin{array}{l} A_{1g} & E_{g} & F_{1g} & F_{2g} & A_{2u} & E_{u} & F_{1u} & \end{array}$	1.383	1.414
$E_{\cdot \cdot}^{zu}$	1.404	1.414
\overline{F}_{1}^{u}	1.877	1.925
F_{2u}^{1u}	1.379	1.414

In species A_{1g} , F_{2g} and A_{2u} we found it as reasonable to modify the CD stretching frequencies. The following values (in cm⁻¹) are consistent with the theoretical product rule along with the observed frequencies otherwise: $v_1 = 2220.6$, $v_{13} = 2135.3$, $v_3 = 2190.2$. The corresponding modification in species F_{1u} gives $v_{10} = 2184.4$. The frequencies of species E_g , F_{1g} and F_{2u} were not modified. Either (a) the Teller-Redlich product rule is satisfied with a sufficient accuracy (E_g, F_{1g}) , (b) the frequencies are inactive (F_{1g}, F_{2u}) or (a & b) both (F_{1g}) . In species E_u we have used a calculated value for v_8 of C_8H_8 . Hence it is reasonable to calculate the corresponding frequency of C_8D_8 in consistence with the product rule; the result is 328.2 cm^{-1} .

We do not report here the complete force field consistent with columns (f) of Table 4 since it is not yet the final one. It may be instructive, however, to show the symmetry force constant block of species F_{1u} for comparison with the preliminary results of sets (c) and (d); see above. All force constants are in mdyne/Å; standard deviations in parentheses.

Inclusion of sym-C₈H₆D₂ and sym-C₈H₂D₆

Della et al. [4] have included sets of observed frequencies for sym-cubane-d₂ and sym-cubane-d₆ in their report.

Symmetry Coordinates

The partially deuterated molecules in question both belong to the D_{3d} symmetry. The normal vibrations are distributed into the different symmetry species according to

$$\Gamma_{\text{vib}}(D_{3d}) = 6A_{1g} + A_{2g} + 7E_g + 2A_{1u} + 5A_{2u} + 7E_u$$
.

The correlations with the normal vibrations of the unsubstituted molecule of O_h symmetry are well known [13]. The O_h symmetry coordinates from Brunvoll and Cyvin [3] were utilized. A certain modification is described above for the $S_2(F_{1\mu})$ coordinate. The following coordinates were subjected to the same type of modification, i.e. leaving out the γ coordinates: $S_2(F_{2g})$, $S_2(A_{2u})$ and $S_1(F_{2u})$. The z-axis of the D_{3d} model was chosen through the atoms 9-1-5-13 (cf. Figure 1). Consequently the a and b coordinates of species E_q and E_u in the O_h model are consistent with the orientation of the corresponding tentatively standardized symmetry coordinates for a puckered hexagonal ring (symmetry D_{3d}) [21]. The different members (a, b and c)of the triply degenerate O_h coordinates had to be combined in order to fit into the D_{3d} scheme. The actual combinations are given below, where the O_h symmetry coordinates are symbolized by the species designations in small letters.

$$f_{1g}(a) + f_{1g}(b) + f_{1g}(c) : A_{2g},$$

$$-f_{1g}(a) + f_{1g}(b) : E_{g}(a),$$

$$-f_{1g}(a) - f_{1g}(b) + 2 f_{1g}(c) : E_{g}(b) ;$$

$$f_{2g}(a) + f_{2g}(b) + f_{2g}(c) : A_{1g},$$

$$-f_{2g}(a) - f_{2g}(b) + 2 f_{2g}(c) : E_{g}(a),$$

$$f_{2g}(a) - f_{2g}(b) : E_{g}(b) ;$$

$$f_{1u}(a) + f_{1u}(b) + f_{1u}(c) : A_{2u},$$

$$f_{1u}(a) + f_{1u}(b) = 2 f_{1u}(c) : E_{u}(a),$$

$$-f_{1u}(a) + f_{1u}(b) : E_{u}(b) ;$$

$$f_{2u}(a) + f_{2u}(b) + f_{2u}(c) : A_{1u},$$

$$f_{2u}(a) + f_{2u}(b) = 2 f_{2u}(c) : E_{u}(b).$$

$$(15)$$

Table 6. Teller-Redlich product rule for the $C_8H_8/$ sym- $C_8H_6D_2$ and $C_8H_8/$ sym- $C_8H_2D_6$ frequencies.

Species (D_{3d})	sym-C ₈	H_6D_2	$sym\text{-}C_8H_2D_6$		
	Obs.	Theor.	Obs.	Theor.	
A_{1g}	1.389	1.414	1.949	1.998	
$E_g^{A_{2g}}$	1.000 1.345	1.000 1.360	1.278 2.576	1.282 2.652	
A_{1u}^{g}	~ 1.002	1.000	1.375	1.414	
$E_u^{A_{2u}}$	1.371	1.400	1.911	1.943	
E_u	1.378	1.400	2.690	2.746	

Numerical Computations

Table 6 shows the observed and theoretical product rules for sym-cubane- d_2 and sym-cubane- d_6 . The observed frequencies [4] were again modified in order to fit accurately the product rules.

Also the reported v_8 frequencies of sym- $C_8H_6D_2$ and sym- $C_8H_2D_6$ (574 and 538 cm⁻¹, respectively), were replaced by calculated values. The modified frequencies (Table 7) were used in a conventional iteration procedure of least-squares fitting for all the four isotopic molecules. The calculated frequencies from the resulting force constants (g) are given in Table 7.

Final Force Field

The force constants of the F_{1u} species were refined for the last time. Table 7 shows the calculated frequencies from the set (g). The corresponding Coriolis constants were computed with the result: $\zeta_1 = -0.101$, $\zeta_2 = 0.301$, $\zeta_3 = -0.200$; see Table 3 for the observed values. Starting from the

Table 7. Vibrational frequencies (cm⁻¹) from least-squares fittings for four isotopic molecules of cubane, along with modified observed data.

Specie	es	C_8H_8		sym-C ₈	H_6D_2	sym-C ₈	H_2D_6	C_8D_8	
$\overline{D_{3d}}$	O_h	Calc.	Mod. obs.	Calc.	Mod. obs.	Calc.	Mod. obs.	Calc.	Mod. obs.
$\overline{A_{1g}}$	A_{1g}	3003 999	2995 1002	2989 989	2993 991	2208 968	2199 967	2213 959	2221 956
	F_{2g}	2943 1181 825 665	2970 1182 821 665	2203 1166 815 654	2197 1168 821 651	2957 1081 707 592	2978 1083 725 579	2195 1062 693 591	2135 1072 715 586
A_{2g}	F_{1g}	1132	1130	1132	1130	883	882	883	884
E_g	E_g	1086 914	1083 912	1015 880	1016 875	1033 690	1035 704	1027 683	1027 684
	F_{1g}	1132	1130	1100	1100	982	985	883	884
	F_{2g}	2943 1181 825 665	2970 1182 821 665	2942 1169 728 640	2938 1174 738 632	2197 1139 751 613	2165 1145 758 598	2195 1062 693 591	2135 1072 715 586
A_{1u}	F_{2u}	1037 831	1036 829	1037 831	1036 829	927 658	914 665	927 658	924 674
A_{2u}	A_{2u}	2975 841	2978 839	2974 825	2968 838	2197 815	2206 807	2193 807	2190 807
	F_{1u}	2971 1234 851	2978 1230 853	2210 1214 847	2193 1201 851	2970 1098 687	2974 1100 690	2210 1073 683	2184 1083 686
E_u	E_u	1150 388	1151 387	1118 368	1109 368	1013 339	1014 340	962 328	960 328
	F_{1u}	2971 1234 851	2978 1230 853	2970 1207 840	2977 1222 844	2212 1159 790	2205 1164 786	2210 1073 684	2184 1083 686
	F_{2u}	1036 831	1036 829	966 714	958 711	934 671	962 651	927 658	924 674

 F_{1u} force constants of set (g) the force field was refined in order to fit accurately the observed frequencies and ζ values according to the techniques described above: iteration procedure with linear equations for Coriolis constants, combined with the L-matrix approximation method. For all the blocks except F_{1u} (referring to O_h symmetry) the force constant set (g) was considered as the final one. The final force field, referred to as set (h), is given in Table 8.

The calculated F_{1u} frequencies of C_8D_8 from the final force field (h) are: 2214, 1081 and 678 cm⁻¹; the result is satisfactory. For the other species of C_8H_8 and C_8D_8 the final calculations are identical to those of Table 7 under columns (g). The observed (unmodified) frequencies are found in Table 2. Table 9 shows the final calculated frequencies for sym-cubane-d₂ and sym-cubane-d₆ along with the observed data.

Analysis of all Deuterated Cubanes

Survey and Notation

Exactly twenty partially deuterated cubanes are possible, in addition to the two pure compounds

Table 8. Final symmetry force constants (mdyne/Å) of cubane, referred to as set (h). Standard deviations in parentheses.

Species (O_h)	F matrix block	
$\overline{A_{1g}}$	4.993 (0.056) 0.446 (0.196)	3.826 (0.102)
E_g	3.578 (0.171) 0.114 (0.030)	0.273 (0.016)
F_{1g}	0.278 (0.006)	
F_{2g}	4.650 (0.015) 0.157 (ass.) -0.061 (ass.) -0.260 (ass.) 0.526 (0.025) 0.265 (ass.)	4.044(0.213) -0.383 (ass.) -0.697 (ass.) 0.821 (0.028)
A_{2u}	4.870 (0.059) -0.089 (0.072)	0.339 (0.013)
E_u	0.422 (0.104) -0.075 (0.051)	0.243 (0.031)
F_{1u}	4.791 (0.016) -0.050 (ass.) 0.283 (ass.) 0.908 (0.046)	3.841 (0.195) -0.383 (0.037)
F_{2u}	2.802 (0.114) -0.094 (0.026)	0.263 (0.012)

Table 9. Final calculated frequencies (cm⁻¹) along with observed data for sym-cubane-d₂ and sym-cubane-d₆.

Species	No.	$sym-C_8H_6D_2$		$sym-C_8H_2D_6$		
(D_{3d})		Calc. (h)	Obs. [4]	Calc. (h)	Obs. [4]	
$\overline{A_{1g}}$	1	2989	2993	2208	2254	
	2	989	991	968	967	
	13 a	2203	2237	2957	2978	
	14a	1166	1168	1081	1083	
	15 a	815	821	707	725	
	16a	654	651	592	579	
A_{2g}	9a	1132	(1130)	883	884	
E_q	5	1015	1016	1033	1035	
3	6	880	875	690	704	
	9b	1100	1100	982	985	
	13b	2942	2970	2197	2229	
	14b	1169	1174	1139	1145	
	15b	728	738	751	758	
	16 b	640	632	613	598	
A_{1u}	17a	1037	1036	914	927	
1 <i>u</i>	18 a	831	~ 827	665	674	
A_{2u}	3	2976	2968	2198	2242	
24	4	827	838	815	807	
	10a	2214	2240	2975	2974	
	11a	1209	1201	1108	1100	
	12a	848	851	682	690	
E_u	7	1119	1109	1018	1014	
	8	368	574	339	538	
	10 b	2977	2977	2217	2236	
	11 b	1206	1222	1159	1164	
	12b	840	844	790	786	
	17b	968	995	934	975	
	18b	712	711	668	651	

(C₈H₈ and C₈D₈). Figure 2 gives a survey of the fourteen different compounds of cubane-d₀, -d₁, -d₂, -d₃ and -d₄. In addition one has the -d₅, -d₆, -d₇ and -d₈ derivatives, which are complementary to -d₃, -d₂, -d₁ and -d₀, respectively. Complementary compounds are here defined as those where the H and D atoms are interchanged. The notation referring to standard (IUPAC) numbering for the eight compounds which complete the list from Fig. 2 is given below. The Roman numerals in parentheses refer to the appropriate complementary compounds in consistence with the numbering of Figure 2.

XV (VIII)	1,2,3,4,5-pentadeuterocubane
XVI (VII)	1,2,3,4,6-pentadeuterocubane
XVII (VI)	1,2,3,5,7-pentadeuterocubane
XVIII (V)	1,2,3,4,5,6-hexadeuterocubane

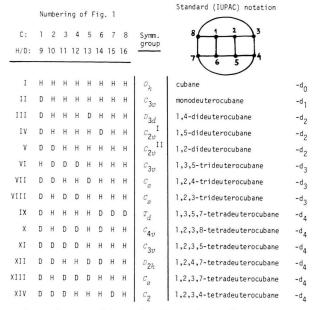


Fig. 2. Survey of isotopic substitutions of cubane with deuterium. Notice that two different C_{2v} models are encountered, here designated C_{2v}^{I} and C_{2v}^{II} ; cf. (22) and (26), respectively.

XIX (IV)	1,2,3,4,5,7-hexadeuterocubane
XX (III)	1,2,3,4,6,7-hexadeuterocubane
XXI (II)	heptadeuterocubane
XXII (I)	octadeuterocubane

The T_d Model

A cubane derivative of T_d symmetry is obtained on substituting the atoms number 9, 14, 15 and 16 (cf. Figure 1). The correlations between the species of the O_h and T_d models are well known [13]; one has

$$\Gamma_{\text{vib}}(T_d) = 4A_1 + 4E + 3F_1 + 7F_2.$$
 (16)

The a, b and c members of degenerate symmetry coordinates are simply correlated into the separate blocks.

The C4r Model

In the C_{4v} model we have adherred to a standard orientation of symmetry coordinates applied to the pyramidal XY₄ model [22]. The cubane model was oriented so that the atoms number 1, 3, 6 and 4 (cf. Fig. 1) correspond to numbers 1, 2, 3 and 4 in the XY₄ model, respectively. In consequence, a σ_v

plane [13] passes through the atoms 1 and 6 (with the x axis lying in this plane), while a σ_d plane intersects the bonds 1-3 and 4-6. With these definitions the symmetrical structure of the normal modes of vibration is

$$\Gamma_{\text{vib}}(C_{4v}) = 7A_1 + 3A_2 + 8B_1 + 4B_2 + 10E$$
. (17)

The correlations with the normal modes of the O_h model were worked out with the result surveyed in Figure 3. The $E_g(a)$ and $E_g(b)$ coordinates of the O_h model are correlated with A_1 and B_2 of the C_{4v} mode, respectively; the $E_u(a)$ and $E_u(b)$ with B_1 and A_2 . For the triply degenerate coordinates the following scheme applies.

$$f_{1g}(c):A_2;$$
 $f_{1g}(a) - f_{1g}(b):E(a);$ $f_{1g}(a) + f_{1g}(b):E(b).$ (18)

$$f_{2g}(c): B_1;$$
 $f_{2g}(a) + f_{2g}(b): E(a);$ $f_{2g}(a) - f_{2g}(b): E(b).$ (19)

$$f_{1u}(c):A_1;$$
 $f_{1u}(a) + f_{1u}(b):E(a);$ $-f_{1u}(a) + f_{1u}(b):E(b).$ (20)

$$f_{2u}(c): B_2;$$
 $f_{2u}(a) - f_{2u}(b): E(a);$ $-f_{2u}(a) - f_{2u}(b): E(b).$ (21)

The considered C_{4v} model is simply correlated with one of the occurring C_{2v} models, namely the one which applies to cubane- d_2 with the substituted

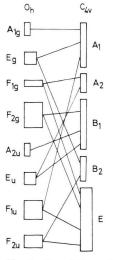


Fig. 3. Correlations between the normal vibrations in cubane (O_h) and 1,2,3,8-tetradeuterocubane $(C_{4v}$ symmetry).

atoms number 9 and 14 in the numbering of Figure 1. The yz plane of reflection was chosen to go through the substituted atoms. One obtains consequently

$$\Gamma_{\text{vib}}(C_{2v}^{\text{I}}) = 15A_1(A_1 + B_1) + 7A_2(A_2 + B_2) + 10B_1(E) + 10B_2(E)$$
 (22)

Here the species designations in parentheses pertain to the C_{4v} group. The E(a) and E(b) blocks are correlated with B_2 and B_1 of the C_{2v} group, respectively.

The D_{2h} Model

Cubane-d₄ with the substituted atoms number 9, 10, 13 and 14 belongs to the symmetry group D_{2h} . In this model the z-axis was maintained as in the C_{4v} model, and the reflection plane through the substituted atoms was chosen as the yz-plane. Hence the appropriate symmetrical structure of the normal modes of vibration is

$$\Gamma_{\text{vib}}(D_{2h}) = 8A_g + 3B_{1g} + 5B_{2g} + 5B_{3g} + 4A_u + 7B_{1u} + 5B_{2u} + 5B_{3u}.$$
 (23)

The correlation scheme with the normal modes of the O_h model is shown in Figure 4. Here the $E_g(a)$

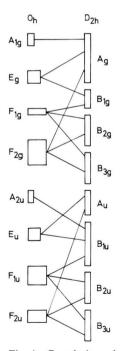


Fig. 4. Correlations between the normal vibrations in cubane (O_h) and 1,2,4,7-tetradeuterocubane (D_{2h}) symmetry).

and $E_g(b)$ coordinates of the O_h model are correlated with A_g and B_{1g} of the D_{2h} model, respectively; the $E_u(a)$ and $E_u(b)$ with B_{1u} and A_u . For the triply degenerate coordinates the below combinations may be applied to both sets of the g and g and g are corrected.

$$f_1(c): B_1; \quad f_1(a) + f_1(b): B_2;$$

 $f_1(a) - f_1(b): B_3;$ (24)
 $f_2(c): A: \quad f_2(a) - f_2(b): B_2;$

$$f_2(a) + f_2(b) : B_3.$$
 (25)

The D_{2h} model is simply correlated with another C_{2r} model, which applies to cubane- d_2 where the atoms number 9 and 10 are substituted. Again the yz plane was chosen to go through the substituted atoms. Then one has

$$\Gamma_{\text{vib}}(C_{2v}^{\text{II}}) = 13A_1(A_g + B_{2u}) + 9A_2(B_{2g} + A_u)$$
 (26)
+ $8B_1(B_{1g} + B_{3u}) + 12B_2(B_{3g} + B_{1u})$.

Here the species in parentheses pertain to the D_{2h} group.

The C_{3v} Model

Different substituted cubanes belong to the C_{3v} symmetry, *inter alia* cubane- d_1 . The symmetrical structure of normal modes is simply correlated with the one of the D_{3d} model treated above. One has

$$\Gamma_{\text{vib}}(C_{3v}) = 11 A_1 (A_{1g} + A_{2u}) + 3 A_2 (A_{2g} + A_{1u}) + 14 E (E_q + E_u).$$
 (27)

The C_s and C_2 Models

 C_s and C_2 are the lowest possible symmetries of partially deuterated cubanes. For the C_s model one has

$$\Gamma_{\text{vib}}(C_s) = 25A'(A_1 + B_2) + 17A''(A_2 + B_1),$$
 (28)

where the species in parentheses pertain to either one of the C_{2v}^{I} or C_{2v}^{II} models. In the case of C_2 it was found

$$\Gamma_{\text{vib}}(C_2) = 22A(A_1 + A_2) + 20B(B_1 + B_2),$$
 (29)

where the parenthesized species pertain to C_{2v}^{II} .

Numerical Computations of Vibrational Frequencies

The final force field (h) was used to calculate the vibrational frequencies of all the possible deu-

terated cubanes. The final calculated frequencies of sym-cubane- d_2 (1,4-dideuterocubane, III) and sym-cubane- d_6 (1,2,3,4,6,7-hexadeuterocubane, XX) are shown in Table 9. Table 10 shows the results for the C_{3r} molecules of cubane- d_j with j=1, 3, 5 and 7. The case of j=4 (1,2,3,5-tetradeuterocubane, XI) is found in Table 11 along with the other tetradeuterocubanes. For the sake of brevity this table does not give the full listing of frequencies for the two least symmetrical compounds, 1,2,3,7-tetradeuterocubane (XIII) and 1,2,3,4-tetradeuterocubane (XIV). Also for the remaining isotopic molecules only some selected calculated frequencies are reported here; cf. Table 12.

Discussion of Vibrational Frequencies

A complete experimental assignment of the fundamentals of cubane-d₁ was furnished by Della et al. [4]. Table 10 shows a very good agreement

between the observed frequencies and our calculations. It seems clear that v_{15b} and v_{18b} should be interchanged on comparing the calculations with experiments. This is not a real discrepancy, however, because of the ambiguities in numbering. Otherwise the mentioned investigators [4] have reported a few selected frequencies of partially deuterated cubanes from isotopic impurities in the sym-cubane-d₆ and cubane-d₈ samples. Their values are shown in brackets in Tables 10 and 12. Also the assignments of these fragmentary experimental frequencies [4] are astonishingly good. This is especially true for the v_2 frequency, which was described as C-C stretch (breathing) in the experimental work [4]. The computations show this frequency to be characteristic for the abundance of D atoms in the molecule. In the four -d₄ molecules, for instance, the calculated v_2 values do not deviate more than 3 cm⁻¹ (cf. Table 11). We feel some

Table 10. Final calculated frequencies (cm⁻¹) for deuterated cubanes with C_{3r} symmetry: $-d_1$ (II), $-d_3$ (VI), $-d_5$ (XVII) and $-d_7$ (XXI), along with observed data from Ref. [4] in brackets. For $-d_4$ (XI), see Table 11.

Species (C_{3r})	No. a	-d ₁	-d ₃	-d ₅	-d ₇
$\overline{A_1}$	1	2999 [2993]	2992	2982	2966
	2	994 [996]	986	975 [971]	964 [960]
	13 a	2208 [2240]	2205	2204	2213
	14 a	1172 [1174]	1098	1078	1067
	15 a	817 [816]	705	692	701
	16 a	659 [~ 659]	619	615	592
	3	2957 [2977]	2947	2196	2193
	4	837 [844]	823	819	811
	10 a	2976 [2969]	2976	2217	2204
	11 a	1221 [1219]	1203	1183	1100
	12 a	850 [853]	840	827	679
A_2	9a	1132 [1132]	1090	1090	883
	17a	1037 [1036]	920	920	927
	18a	831 [834]	724	724	658
E	5	1069 [1062]	1033	1019	1032
	6	898 [898]	857	748 [716]	681
	9b	1104 [1101]	1091	974	913
	13b	2943 [2969]	2210	2208	2196
	14b	1173 [1179]	1160	1097	1070
	15b	721 [826]	708	702	692
	16b	651 [652]	634	607	600
	7	1144 [1145]	1118	1110	1003
	8	378 [590]	360	346	334
	10b	2978 [2977]	2959	2958	2216
	11b	1220 [1225]	1195	1167	1150
	12b	844 [847]	826	797	766
	17b	987 [1002]	964	919	938
	18b	829 [722]	757	670	665

^a In some cases the numbering is tentative.

Table 11. Final calculated frequencies (cm⁻¹) for cubane-d₄ of different symmetries: T_d (IX), C_{4_F} (X), C_{3_F} (XI), D_{2h} (XII), C_s (XIII) and C_2 (XIV). Reported observed value for -d₄ [4] $v_2 = 978$ cm⁻¹.

Species (O_h)	No. a	T_d	C_{4v}		C_{3r}		D_{2h}		
A_{1g}	1 2	2989 981	2990 978		2990 979		2973 979		
E_g	5 6	1017 780	1038 878	1071 862	1037 856		1036 868	1004 753	
F_{1g}	9	1090	923	1017	1090	976	1106	1155	951
F_{2g}	13 14 15 16	2210 1097 702 616	2195 1163 738 640	2960 1127 692 614	2196 1078 695 618	2208 1153 712 620	2205 1145 699 615	2942 1040 721 616	2199 1156 749 642
A_{2u}	3 4	2203 822	2959 825		2213 821		2205 824		
E_u	7 8	1119 352	1142 356	1027 352	1106 354		1109 352	1033 353	
F_{1u}	10 11 12	2958 1184 827	2215 1178 682	2206 1201 733	2959 1202 839	2959 1186 788	2976 1193 755	2219 1183 837	2976 1160 836
F_{2u}	17 18	920 724	979 669	949 831	920 724	962 681	933 746	944 663	995 677
Species (O_h)	No. a	C_s			C_2				
$\overline{A_{1g}}$	2	980			979				
E_g	6	850	853		852	863	<0.4		
F_{2g} A_{2g}	16 4	632 822	611	620	613 825	628	624		

^a In some cases the numbering is tentative.

doubts as to the experimental assignment of 716 cm⁻¹ as v_6 of cubane-d₅ (cf. Table 10), but we have no better alternative. In general we find that v_6 , which was described as C–H bend [4], is not particularly characteristic for the number of D atoms in the molecule; cf. Tables 11 and 12. The v_{16} frequencies (CC₃ deformation) appear to be moderately characteristic, namely within about 30 cm^{-1} . The calculated v_4 frequencies (CC₃ def.) on the other hand, are found to vary less than 10 cm^{-1} for different cubane molecules with the same number of D atoms.

Della et al. [4] have suggested a linear dependence on j in cubane- d_j for the v_2 frequency. This feature is confirmed with astonishing accuracy by our calculations. By least-squares fitting we have derived the formula

$$v_2/\text{cm}^{-1} = 999.8 - 5.1 j$$
. (30)

Here the constant 5.1 is comparable with 5.75 reported in the experimental work [4]. Figure 5 shows the diagram of v_2 as a function of j. The v_4 frequency was treated in the same way, arriving at the formula

$$v_4/\text{cm}^{-1} = 837.7 - 3.8 j$$
 (31)

and the diagram of Figure 6. In this case the standard deviation from linearity is greater than in the case of v_2 ; cf. legends of Figures 5 and 6.

Coriolis constants

The Coriolis constants are known to be rather sensitive for variations in the force constants [15–17, 23–30]. Nevertheless we believe that they may be calculated with good confidence from the present final force field, since it is based on a large

Table 12. Selected final calculated frequencies (cm⁻¹) for some partially deuterated cubanes. Observed values [4] in brackets.

Compound	Symmetry	v_2	v_6	v_{16a}	$v_{16b,c}$	v_4
-d ₂ (III)	D_{3d}	989	880	654	640	827
$-d_2$ (IV)	C_{2v}^{I}	990	891	646	631	825
-d ₂ (V)	$C_{2v}^{ m II}$	991	865 887 890	631	648 643 654	832
-d ₂ -d ₃ (VI)	C_{3v}	[991] 986	[875] 857	[651] 619	[632] 634	823
-d ₃ (VIII)	C_s	984	875 857	626	646 626	822
-d ₃ (VIII)	C_s	985	884 864	644	621 629	827
$-d_5(XV)$	C_s	974	792 744	619	610 607	820
$-d_5$ (XVI)	C_s	974	783 752	614	602 624	820
-d ₅ (XVII)	C_{3v}	975	748	615	607	819
-d ₅		[971]	[716]			
-d ₆ (XVIII)	$C_{2v}^{ m II}$	970	848 780	601	611 602	816
-d ₆ (XIX)	C_{2v}^{I}	969	799 750	605	609 598	815
$-d_6(XX)$	D_{3d}	968	690	592	613	815
-d ₆		[967]	[704]	[579]	[598]	

 $Table~13.~Calculated~Coriolis~constants~for~C_8H_8,~C_8H_7D,~sym-C_8H_6D_2,~sym-C_8H_2D_6~and~C_8D_8.\\$

Species (O_h)	No. a	-d ₀ (I)	-d ₁ (II)	-d ₂ (III)	-d ₆ (XX)	-d ₈ (XXII)
$\overline{E_g}$	5 6	0.000 0.000	0.345 0.113	0.528 0.284	0.114 0.133	0.000 0.000
F_{1g}	9	0.500	-0.111	-0.203	0.388	0.500
F_{2g}	13 14 15 16	0.097 0.574 0.732 -0.404	0.097 0.409 0.268 -0.105	0.096 0.434 0.235 0.089	0.131 0.901 0.160 -0.292	0.128 0.673 0.053 0.145
E_u	7 8	$0.000 \\ 0.000$	0.152 0.087	-0.033 0.165	-0.185 -0.121	$0.000 \\ 0.000$
F_{1u}	10 11 12	-0.100 0.255 -0.155	-0.100 0.171 -0.049	-0.101 -0.084 -0.020	-0.132 0.678 0.524	-0.135 -0.004 0.139
F_{2u}	17 18	0.500 0.500	0.571 0.635	0.651 0.421	0.113 0.123	0.500 0.500

^a In some cases the numbering is tentative, but it is consistent with Tables 2, 4, 9 and 10.

number of observed frequencies for isotopic molecules, in addition to some observed Coriolis constants. It is difficult to give some definite error limits of the calculated Coriolis constants, but $\pm\,0.01$ seems to be a reasonable estimate. The final

force field (h) (cf. Table 8) was used to compute the Coriolis constants for all the twenty-two isotopic molecules considered here. The complete material is too voluminous to be reported here. We only give the first-order Coriolis constants of cubane,

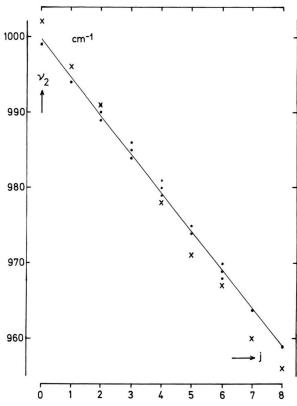


Fig. 5. The v_2 frequency as a function of j in cubane- d_j molecules. Standard deviation from linearity (for the calculated values): 0.83 cm^{-1} . Experimental values [4] are indicated by crosses.

Table 14. Calculated mean amplitudes of vibration (Å) for cubane and cubane- d_8 .

Distance a	C_8H_8		C_8D_8		
	T=0	298 K	T=0	298 K	
C-C (1.551)	0.0533	0.0539	0.0531	0.0538	
C C (2.193)	0.0575	0.0597	0.0571	0.0595	
C C (2.686)	0.0563	0.0576	0.0558	0.0573	
C-H(1.085)	0.0785	0.0785	0.0671	0.0671	
C H (2.351)	0.106	0.107	0.092	0.094	
C H (3.142)	0.103	0.106	0.091	0.094	
C H (3.771)	0.093	0.093	0.082	0.083	
H H (2.804)	0.166	0.168	0.140	0.145	
H H (3.965)	0.149	0.153	0.126	0.134	
H H (4.856)	0.118	0.119	0.101	0.102	

^a H stands for both ¹H and ²H = D. The equilibrium distances (in Å units) are included in parentheses.

Table 15. Calculated perpendicular amplitude correction coefficients (Å) for cubane and cubane- d_8 .

Distance a	C_8H_8		C_8D_8		
	T=0	298 K	T=0	298 K	
C-C (1.551)	0.0020	0.0023	0.0020	0.0023	
C C (2.193)	0.0013	0.0014	0.0013	0.0015	
C C (2.686)	0.0008	0.0008	0.0009	0.0009	
C-H(1.085)	0.0161	0.0166	0.0115	0.0125	
C H (2.351)	0.0077	0.0083	0.0056	0.0065	
CH (3.142)	0.0056	0.0060	0.0040	0.0046	
C H (3.771)	0.0045	0.0047	0.0032	0.0035	
H H (2.804)	0.0104	0.0113	0.0073	0.0086	
H H (3.965)	0.0077	0.0082	0.0052	0.0060	
H H (4.856)	0.0063	0.0065	0.0042	0.0045	

^a See footnote to Table 14.

cubane-d₁, sym-cubane-d₂, sym-cubane-d₆ and cubane-d₈, i.e. the five molecules studied most extensively in the spectroscopical experiments [4]. These computational results are presented in Table 13. The unsubstituted molecule (C_8H_8) of O_h symmetry was also analysed in terms of the C_{3v} and D_{3d} symmetry coordinates, whereby the nonvanishing first-order ζ constants were reproduced numerically. The values of 0.5 for the $F_{1g} \times F_{1g}$ and

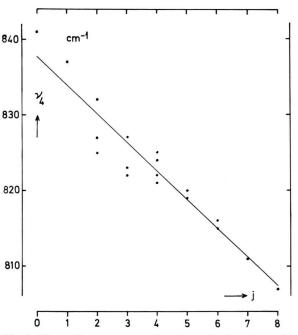


Fig. 6. The v_4 frequency as a function of j in cubane- d_j molecules. Standard deviation: 2.30 cm⁻¹.

 $F_{2u} \times F_{2u}$ constants in the O_h models (C₈H₈ and C_8D_8) are exact; they do not depend on the force field.

Vibrational Amplitudes

The mean amplitudes of vibration, l [7], are of great interest in gas electron diffraction studies [7, 31]. The final force field (h) was used to compute the l values of C_8H_8 and C_8D_8 with the results shown in Table 14. These calculations are supposed to be quite reliable, especially because the mean amplitudes are not so sensitive for variations in force constants [7, 30]. The error limits are roughly

- [1] P. E. Eaton and T. W. Cole, Jr., J. Amer. Chem. Soc. 86, 3157 (1964).
- [2] E. B. Fleischer, J. Amer. Chem. Soc. **86**, 3889 (1964).
- [3] J. Brunvoll and S. J. Cyvin, Kgl. Norske Vidensk. Selsk. Skrift. No. 3 (1967).
- [4] E. W. Della, E. F. McCoy, H. K. Patney, G. L. Jones, and F. A. Miller, J. Amer. Chem. Soc. 101, 7441 (1979).
- [5] T. W. Cole, Jr., J. Perkins, S. Putnam, P. W. Pakes, and H. L. Strauss, J. Phys. Chem. 85, 2185 (1981).
- [6] P. W. Pakes, Ph.D. Dissertation, University of California, Berkeley 1979.
- [7] S. J. Cyvin, Molecular Vibrations and Mean Square Amplitudes, Universitetsforlaget, Oslo, and Elsevier, Amsterdam 1968.
- [8] T. Jonvik and J. Almlöf, The Norwegian Electron Diffraction Group. Annual Report p. 37, Oslo 1981.
- [9] J. H. Meal and S. R. Polo, J. Chem. Phys. 24, 1119 (1956).
- [10] J. H. Meal and S. R. Polo, J. Chem. Phys. 24, 1126 (1956).
- [11] H. C. Allen, Jr. and P. C. Cross, Molecular Vib-Rotors, Wiley, New York 1963.
 [12] J. E. Wollrab, Rotational Spectra and Molecular
- Structure, Academic Press, New York 1967
- [13] E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York 1955.
- [14] J. C. Decius, J. Chem. Phys. 38, 241 (1963).
- [15] R. C. Lord and I. Nakagawa, J. Chem. Phys. 39, 2951
- (1963). [16] I. W. Levin and S. Abramowitz, J. Chem. Phys. **43**, 4213 (1965).
- [17] I. M. Mills, J. Mol. Spectry. 5, 334 (1960); erratum: ibid. 17, 164 (1965).
- [18] S. J. Cyvin, I. Alfheim, and G. Hagen, Acta Chem. Scand. 24, 3038 (1970).

estimated to about ± 0.0005 Å for the bonded distances and about ± 0.001 Å for the nonbonded

Modern gas electron diffraction investigations also employ the perpendicular amplitude correction coefficients, K [7, 31, 32]. The K values for cubane and cubane-d₈ were also computed from the final force field and are shown in Table 15.

Acknowledgement

Financial support to BNC from the Norwegian Research Council for Science and the Humanities is gratefully acknowledged.

- [19] B. N. Cyvin and S. J. Cyvin, Acta Chem. Scand. 26, 3943 (1972).
- [20] B. N. Cyvin, S. J. Cyvin, and J. C. Whitmer, J. Mol. Struct. 53, 281 (1979).
- [21] B. Vizi and S. J. Cyvin, Acta Chem. Scand. 22, 2012
- [22] S. J. Cyvin, B. N. Cyvin, I. Elvebredd, G. Hagen, and J. Brunvoll, Kgl. Norske Vidensk. Selsk. Skrift. No. **22** (1972)
- [23] J. Aldous and I. M. Mills, Spectrochim. Acta 18, 1073 (1962).
- [24] J. Aldous and I. M. Mills, Spectrochim. Acta 19, 1567
- [25] J. L. Duncan and I. M. Mills, Spectrochim. Acta 20, 523 (1964). [26] J. L. Duncan and I. M. Mills, Spectrochim. Acta **20**,
- 1089 (1964).
- 27] J. L. Duncan, J. Mol. Spectry. 13, 338 (1964).
- [28] I. W. Levin and H. Ziffer, J. Chem. Phys. 43, 4023 (1965).
- [29] I. W. Levin and S. Abramowitz, J. Chem. Phys. 44, 2562 (1966).
- [30] S. J. Cyvin, B. N. Cyvin, J. Brunvoll, B. Andersen, and R. Stølevik, Selected Topics in Structure Chemistry (Eds.: P. Andersen, O. Bastiansen, and S. Furberg), p. 69, Universitetsforlaget, Oslo 1967.
- [31] K. Kuchitsu and S. J. Cyvin, Molecular Structures and Vibrations (Ed.: S. J. Cyvin), p. 183, Elsevier, Amsterdam 1972
- [32] S. J. Cyvin, B. N. Cyvin, G. Hagen, D. W. J. Cruickshank, and G. S. Pawley, Molecular Structures and Vibrations (Ed.: S. J. Cyvin), p. 299, Elsevier, Amsterdam 1972.